Chocolate conching is a highly complex, thermomechanical process that transforms the aroma and flow properties of a dry starting material. Different conched plastic masses of dark chocolate were characterized. Rheological characterization of plastic masses was performed for the first time using a closed cavity rheometer (CCR). In free cocoa butter derived from the plastic masses, acetic acid, benzaldehyde, (R,S)-(±)-linalool, 2,3,5,6-tetramethylpyrazine, and 2-phenylethanol were quantified by stable isotope dilution analysis (SIDA) and gas chromatography-mass spectrometry. During the conching process, the amount of free cocoa butter increased possibly due to de-agglomeration. The complex viscosity of the plastic mass decreased as a function of conching time. Regarding aroma refinement, the concentrations of all five aroma-active volatiles decreased with increasing conching duration, albeit to varying degrees. The level of acetic acid showed the most pronounced decrease of about 60%, whereas linalool exhibited the lowest decrease in concentration, up to 26%. Overall, a lower polarity or boiling point of the aroma-active volatiles was linked to a stronger decrease in concentration during conching. These data illustrate the influence of conching on texture and the respective aroma changes, which deepens understanding of the conching effect on the sensory quality of dark chocolate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.112063DOI Listing

Publication Analysis

Top Keywords

aroma-active volatiles
12
dark chocolate
12
plastic masses
12
plastic mass
8
conching
8
free cocoa
8
cocoa butter
8
acetic acid
8
decrease concentration
8
plastic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!