Soybean polysaccharides have a large molecular weight and complex structure, which is not conducive to body absorption and exerting their biological activities. After the in vitro hydrolysate digestion of soybean polysaccharides, their interactions with intestinal epithelial cell monolayers during soybean polysaccharide-derived short chain fatty acids (SCFAs) uptake and transport were determined by co-culturing soybean polysaccharide hydrolysate products with Caco-2 cells. Based on prepared soybean polysaccharide hydrolysates, physicochemical indices and hydrolysate components were explored and the interface characteristics between SCFAs and Caco-2 cells were characterized using interfacial rheology methods for the first time. Transwell chambers were used to explore relationships between SCFAs transport and the air-liquid interface in Caco-2 cells. We showed that physicochemical properties, cell proliferation rates, and the interfacial tension of soybean polysaccharide hydrolysis products were related to fermentation times, with differences observed between the two hydrolyzed soybean polysaccharides (microwave ammonium oxalate soy hull polysaccharides (MASP) and soluble soy polysaccharides (SSP)). MASP outperformed SSP in terms of total sugar utilization and added cellular value by intestinal flora. Hydrolyzed soybean polysaccharides decreased interfacial tension with increasing hydrolysis times when modulating the interfacial properties of a Caco-2 cell co-culture system. SCFAs translocation rates increased with fermentation time, from 0 h to 24 h. Also, a negative correlation was observed between SCFAs translocation rates and interfacial tension. Our data provide a foundation for the intestinal absorption of soybean polysaccharides and at the same time bring new insights into the interactions between polysaccharides and food in the future, promoting the application of polysaccharides in food processing and even medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.112136DOI Listing

Publication Analysis

Top Keywords

soybean polysaccharides
20
soybean polysaccharide
16
caco-2 cells
16
interfacial tension
12
soybean
10
polysaccharides
9
air-liquid interface
8
short chain
8
chain fatty
8
fatty acids
8

Similar Publications

Emulsions play an important role in food systems by encapsulating and delivering active compounds, but maintaining their stability under various conditions can be challenging. This study explored how the concentrations of Tremella polysaccharides (TPs) (0-0.75 %) affects the structural of whey protein isolate (WPI) and the stability of their emulsions at pH 4.

View Article and Find Full Text PDF

Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach.

Sci Rep

January 2025

BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.

Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content.

View Article and Find Full Text PDF

Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.

View Article and Find Full Text PDF

Regulation of whey protein emulsion gel's structure with pullulan to enhance astaxanthin bioaccessibility.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China. Electronic address:

In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!