The magnitude of heterogeneity in individual-cell growth dynamics is an inherent characteristic of Salmonella enterica ser. Typhimurium strains.

Food Res Int

Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece. Electronic address:

Published: December 2022

Individual-cell heterogeneity is a major source of variability in biological systems affecting importantly, among others, microbial behavior. Characterization of cell populations of pathogenic bacterial strains in their entirety, ignoring the phenotypic variability of single cells, may result in erroneous safety risk estimates. The objective of the present study was the evaluation and comparison of the heterogeneity in the individual-cell growth dynamics of different strains of Salmonella enterica. The stochasticity in the growth of single cells of five S. enterica ser. Typhimurium strains was quantitatively described using time-lapse microscopy, and the existence of a strain effect was statistically assessed. In total, 831 growing microcolonies originating from single cells were monitored and analyzed, and the growth kinetic parameters of lag time (λ) and maximum specific growth rate (μ) for each one of them were estimated. An extensive heterogeneity in individual-cell growth kinetics was recorded, while significant inter-strain differences in their heterogeneity were evident based on simultaneous Bonferroni confidence intervals and Levene's tests. The Logistic and LogLogistic probability distribution provided the best fitting for μ and λ data, respectively for all the tested strains. The strain effect on the above distributions was also demonstrated with pairwise comparisons of the decile differences. The impact of strain-dependent heterogeneity on microbial growth was visualized by comparing stochastic growth curves of different strains using Monte Carlo simulation. In conclusion, the individual-cell growth dynamics of S. enterica are heterogeneous, with the magnitude of the observed heterogeneity appearing to be an inherent characteristic of bacterial strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111991DOI Listing

Publication Analysis

Top Keywords

individual-cell growth
16
heterogeneity individual-cell
12
growth dynamics
12
single cells
12
growth
9
inherent characteristic
8
salmonella enterica
8
enterica ser
8
ser typhimurium
8
typhimurium strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!