AI Article Synopsis

  • - The study examined how adding fatty acids (FAs) to instant rice noodles (IRN) impacts their texture, digestion, and retrogradation properties, noting that IRN samples had lower gelatinization enthalpy compared to the rice starch samples with FAs.
  • - Long-chain saturated FAs produced more organized structures in IRN, while unsaturated FAs showed the strongest interactions with rice starch, leading to lower crystallinity in IRN compared to starch-FAs complexes.
  • - Introducing FAs delayed the retrogradation of IRN and increased their resistant starch content, suggesting that starch-FA complexes could improve IRN’s texture and digestion characteristics significantly.

Article Abstract

The formation of starch-lipid complexes in instant rice noodles (IRN) free from and incorporated with fatty acids (FAs) and their impacts on textural, in vitro digestive and retrogradation properties were investigated. The gelatinization enthalpy values of IRN samples (1.24-4.93 J/g) were noticeably decreased (P < 0.05) compared to rice starch samples (2.54-6.89 J/g) fortified with FAs. Additionally, long-chain saturated FAs (stearic acid (SA, C18:0)) complexes produced higher ordered structures than the shorter-chain FAs (C12:0-C16:0), for 18-carbon FAs, the unsaturated FAs (linoleic acid (LOA, C18:2)) exhibited the strongest intermolecular interactions with rice starch. The relative crystallinity of IRN (27.01%-38.47%) was lower than the rice starch-FAs complexes (38.36%-56.80%). FAs delayed the retrogradation degree of IRN storaged at 4 °C for 21 days ascribed to the formation of V-type complexes. Higher enzymatic resistance was observed in IRN added FAs with resistant starch content increased from 5.13% to 14.42% (LOA), and the sample fortified with SA exhibited the highest slowly digestible starch content (35.92%). SEM revealed that the IRN compounded with palmitic acid, SA and LOA displayed more compact and regular structures. Overall, the formation of starch-FAs complexes probably is a novel strategy in improving the textural, digestive, and retrogradation properties of IRN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111933DOI Listing

Publication Analysis

Top Keywords

formation starch-lipid
8
starch-lipid complexes
8
complexes instant
8
instant rice
8
rice noodles
8
incorporated fatty
8
fatty acids
8
retrogradation properties
8
noodles incorporated
4
acids structure
4

Similar Publications

This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased.

View Article and Find Full Text PDF

The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.

View Article and Find Full Text PDF

Effect of safflower seed oil on the molecular structural and enzyme hydrolysis properties of maize starch-lipid complexes.

Food Chem

December 2024

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China. Electronic address:

To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes.

View Article and Find Full Text PDF

While the digestibility of millet starch has been studied considerably, the effects of cooking on starch digestibility in millet remain insufficiently understood. This study investigated the effects of cooking on in vitro enzymatic starch digestion in eight cooked millet flour cultivars by seeking its correlations with the changes in composition (moisture, total starch, protein, lipids, total dietary fiber, and phenolics), structure, and physicochemical properties. Compared to raw flours, cooked flours had a similar content of total starch and protein, a lower content of moisture, lipids, and total phenolic content, and a higher content of total dietary fiber.

View Article and Find Full Text PDF

Starch-lipid complexes have attracted widespread attention owing to high anti-digestibility and thermal stability. However, methods to increase the content of starch-lipid complexes are limited. Therefore, this study aims to investigate the effect of atmospheric cold plasma (ACP) treatment for different times (0, 1, 3, 5, and 7 min) on the formation and structure of complexes between maize starch (MS) and lauric acid (LA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!