Quantum physics in connected worlds.

Nat Commun

Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.

Published: December 2022

Theoretical research into many-body quantum systems has mostly focused on regular structures which have a small, simple unit cell and where a vanishingly small fraction of the pairs of the constituents directly interact. Motivated by advances in control over the pairwise interactions in many-body simulators, we determine the fate of spin systems on more general, arbitrary graphs. Placing the minimum possible constraints on the underlying graph, we prove how, with certainty in the thermodynamic limit, such systems behave like a single collective spin. We thus understand the emergence of complex many-body physics as dependent on 'exceptional', geometrically constrained structures such as the low-dimensional, regular ones found in nature. Within the space of dense graphs we identify hitherto unknown exceptions via their inhomogeneity and observe how complexity is heralded in these systems by entanglement and highly non-uniform correlation functions. Our work paves the way for the discovery and exploitation of a whole class of geometries which can host uniquely complex phases of matter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718787PMC
http://dx.doi.org/10.1038/s41467-022-35090-yDOI Listing

Publication Analysis

Top Keywords

quantum physics
4
physics connected
4
connected worlds
4
worlds theoretical
4
theoretical many-body
4
many-body quantum
4
systems
4
quantum systems
4
systems focused
4
focused regular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!