LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718779 | PMC |
http://dx.doi.org/10.1038/s41467-022-35093-9 | DOI Listing |
Curr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden.
Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Heterogeneous nuclear ribonucleoprotein M (HnRNPM) is a key splicing factor involved in various biological processes, including the epithelial‒mesenchymal transition and cancer development. Alternative splicing is widely involved in the process of spermatogenesis. However, the function of hnRNPM as a splicing factor during spermatogenesis remains unknown.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFJ Neurosci
January 2025
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!