A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Succinylated lysine residue prediction revisited. | LitMetric

Lysine succinylation is a kind of post-translational modification (PTM) that plays a crucial role in regulating the cellular processes. Aberrant succinylation may cause inflammation, cancers, metabolism diseases and nervous system diseases. The experimental methods to detect succinylation sites are time-consuming and costly. This thus calls for computational models with high efficacy, and attention has been given in the literature to develop such models, albeit with only moderate success in the context of different evaluation metrics. One crucial aspect in this context is the biochemical and physicochemical properties of amino acids, which appear to be useful as features for such computational predictors. However, some of the existing computational models did not use the biochemical and physicochemical properties of amino acids. In contrast, some others used them without considering the inter-dependency among the properties. The combinations of biochemical and physicochemical properties derived through our optimization process achieve better results than the results achieved by combining all the properties. We propose three deep learning architectures: CNN+Bi-LSTM (CBL), Bi-LSTM+CNN (BLC) and their combination (CBL_BLC). We find that CBL_BLC outperforms the other two. Ensembling of different models successfully improves the results. Notably, tuning the threshold of the ensemble classifiers further improves the results. Upon comparing our work with other existing works on two datasets, we successfully achieve better sensitivity and specificity by varying the threshold value.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac510DOI Listing

Publication Analysis

Top Keywords

biochemical physicochemical
12
physicochemical properties
12
computational models
8
properties amino
8
amino acids
8
achieve better
8
properties
5
succinylated lysine
4
lysine residue
4
residue prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!