A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronization of breeding and its impact on genetic parameters and evaluation of female fertility traits. | LitMetric

Synchronization of breeding and its impact on genetic parameters and evaluation of female fertility traits.

J Dairy Sci

Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083 Australia.

Published: January 2023

Achieving an acceptable level of fertility in herds is difficult for many dairy producers because identifying cows in estrus has become challenging owing to poor estrus expression, increased herd size, and lack of time and skilled labor for estrus detection. As a result, synchronization of estrus is often used to manage reproduction. The aims of this study were (1) to identify artificial inseminations (AI) that were performed following synchronization and (2) to assess the effect of synchronization on genetic parameters and evaluation of fertility traits. This study used breeding data collected between 1995 and 2021 from over 4,600 Australian dairy herds that had at least 30 matings per year. Because breeding methods were not reported, the recording pattern of breeding dates showing a large proportion of the total AI being recorded on a single date of the year served as an indicator of synchronization. First, the proportion of AI recorded on each day of the year was calculated for each herd-year. Subsequently, synchronization was defined when a herd with, for instance, only 30 matings in a year, had at least 0.20 or more AI on the same day. As the number of breedings in a herd-year increased, the threshold for classifying AI was continuously reduced from 0.20 to as low as 0.03 under the assumption that mating of many cows on a single date becomes increasingly difficult without synchronization. From the current data, we deduced that 0.11 of all AI were possibly performed following synchronization (i.e., timed AI, TAI). The proportion of AI classified as TAI increased over time and with herd size. Although the deviation from equal numbers of mating on 7 d of the week was not used for classifying AI, 0.44 of AI being categorized as TAI were performed on just 2 d of the week. When data classified as TAI were used for estimating genetic parameters and breeding values, the interval between calving and first service (CFS) was found to be the most affected trait. The phenotypic and additive genetic variance and heritability, as well as variability and reliability of estimated breeding values of bulls and cows for CFS were lower for TAI than for AI performed following detected estrus (i.e., estrus-detected AI, EAI). For calving interval, first service nonreturn rate (FNRR), and successful calving rate to first service, genetic correlations between the same trait measured in TAI and EAI were close to 1, in contrast to 0.55 for CFS. The lower genetic variances and heritabilities for FNRR and calving interval in TAI than in EAI suggests that synchronization reduces the genetic variability of fertility. In conclusion, TAI makes CFS an ineffective measure of fertility. One approach to minimize this effect on genetic evaluations is to identify TAI (using the method described for example) and then set the CFS of these cows as missing records when running multitrait genetic evaluations of fertility traits that include CFS. In the long term, the most practical and accurate way to reduce the effect of synchronization on genetic evaluations is to record TAI along with mating data.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-22232DOI Listing

Publication Analysis

Top Keywords

genetic parameters
12
fertility traits
12
genetic evaluations
12
synchronization
10
genetic
10
tai
10
parameters evaluation
8
herd size
8
performed synchronization
8
synchronization genetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!