Cisplatin Toxicity Is Mediated by Direct Binding to Toll-Like Receptor 4 through a Mechanism That Is Distinct from Metal Allergens.

Mol Pharmacol

Departments of Medical Microbiology & Immunology (I.K.D., A.P.B.) and Biochemistry (J.G., M.M.), Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada

Published: March 2023

Cisplatin is an effective chemotherapeutic agent, yet its use is limited by several adverse drug reactions, known as cisplatin-induced toxicities (CITs). We recently demonstrated that cisplatin could elicit proinflammatory responses associated with CITs through Toll-like receptor 4 (TLR4). TLR4 is best recognized for binding bacterial lipopolysaccharide (LPS) via its coreceptor, MD-2. TLR4 is also proposed to directly bind transition metals, such as nickel. Little is known about the nature of the cisplatin-TLR4 interaction. Here, we show that soluble TLR4 was capable of blocking cisplatin-induced, but not LPS-induced, TLR4 activation. Cisplatin and nickel, but not LPS, were able to directly bind soluble TLR4 in a microscale thermophoresis binding assay. Interestingly, TLR4 histidine variants that abolish nickel binding reduced, but did not eliminate, cisplatin-induced TLR4 activation. This was corroborated by binding data that showed cisplatin, but not nickel, could directly bind mouse TLR4 that lacks these histidine residues. Altogether, our findings suggest that TLR4 can directly bind cisplatin in a manner that is enhanced by, but not dependent on, histidine residues that facilitate binding to transition metals. SIGNIFICANCE STATEMENT: This work describes how the xenobiotic cisplatin interacts with Toll-like receptor 4 (TLR4) to initiate proinflammatory signaling that underlies cisplatin toxicities, which are severe adverse outcomes in cisplatin treatment. Here, this study provides a mechanistic bridge between cisplatin extracellular interactions with TLR4 and previous observations that genetic and chemical inhibition of TLR4 mitigates cisplatin-induced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/molpharm.122.000595DOI Listing

Publication Analysis

Top Keywords

directly bind
16
tlr4
13
toll-like receptor
12
cisplatin
10
receptor tlr4
8
transition metals
8
soluble tlr4
8
tlr4 activation
8
cisplatin nickel
8
histidine residues
8

Similar Publications

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Background: Sclerostin (SOST) is traditionally regarded as an osteocyte-derived secreted glycoprotein that regulates bone mineralization. Recent studies reported that SOST is also released from non-skeletal sources, especially during inflammation. However, the cellular source and regulatory mechanisms governing SOST generation in inflammation remain unclear.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds.

Int J Mol Sci

January 2025

Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.

Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.

View Article and Find Full Text PDF

Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer.

Cancers (Basel)

January 2025

Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.

The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!