3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis.

Acta Biomater

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. Electronic address:

Published: February 2023

Generally, brain angiogenesis is a tightly regulated process, which scarcely occurred in the absence of specific pathological conditions. Delivery of exogenous angiogenic factors enables the induction of desired angiogenesis by stimulating neovasculature formation. However, effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. Herein, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs), using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink for printing patches through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition reaction with combining methacrylated hyaluronic acid (HAMA) and vascular-tissue-derived decellularized extracellular matrix (VdECM), and thermal crosslinking of VdECM. 3D printing technology, a useful approach with fabrication versatility with customizable systems and multiple biomaterials, is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by label-free photoacoustic microscopy in vivo. The developed multi-GFs releasing patch may offer a promising therapeutic approach of spatiotemporal drugs releasing such as cerebral ischemia, ischemic heart diseases, diabetes, and even use as vaccines. STATEMENT OF SIGNIFICANCE: Effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. In this study, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs) using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition, and thermal crosslinking. 3D printing technology is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by photoacoustic microscopy in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.11.050DOI Listing

Publication Analysis

Top Keywords

hydrogel patch
16
separated dual
16
dual gfs
16
extracellular matrix-based
12
matrix-based hybrid
12
hybrid inks
12
cerebral angiogenesis
12
fabrication versatility
12
decellularized extracellular
8
effective strategies
8

Similar Publications

The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch.

View Article and Find Full Text PDF

A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.

View Article and Find Full Text PDF

Flexible Electronic Patch Utilizing Gelatin Film for Heart and Brain Signal Detection.

Langmuir

January 2025

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.

Flexible electronic patches have been widely studied in various fields. However, they still face serious challenges in cardio-brain signaling monitoring to achieve accurate adhesion and detection with compatibility in mildly humid environments. To tackle these challenges, we engineered a gelatin hydrogel film cross-linked with a biocompatible matrix factor and combined it with a blend of liquid metal and PVP to create the flexible electronic patch.

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Marine algal polysaccharides for drug delivery applications: A review.

Int J Biol Macromol

January 2025

Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt. Electronic address:

In recent decades, there has been a growing interest in the use of polysaccharides that exhibit biological activity for a wide range of innovative applications. This is due to their nontoxicity, biodegradability, biocompatibility, and therapeutic properties. The diverse properties of polysaccharides derived from marine algae make them a promising strategy for the construction of drug delivery systems (DDSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!