Parkinson's disease (PD) is characterized by an abnormal post-translational modifications (PTM) in amino acid sequence and aggregation of alpha-synuclein (α-Syn) protein. It is generally believed that dopamine (DA) metabolite in dopaminergic (DAergic) neurons promotes the aggregation of toxic α-Syn oligomers and protofibrils, whereas DA inhibits the formation of toxic fibers and even degrades the toxic fibers. Therefore, the study on interaction between DA metabolites and α-Syn oligomers is one of the current hot topics in neuroscience, because this effect may have direct relevance to the selective DAergic neuron loss in PD. Several mechanisms have been reported for DA metabolites induced α-Syn oligomers viz. i) The reactive oxygen species (ROS) released during the auto-oxidation or enzymatic oxidation of DA changes the structure of α-Syn by the oxidation of amino acid residue leading to misfolding, ii) The oxidized DA metabolites directly interact with α-Syn through covalent or non-covalent bonding leading to the formation of oligomers, iii) DA interacts with lipid or autophagy related proteins to decreases the degradation efficiency of α-Syn aggregates. However, there is no clear-cut mechanism proposed for the interaction between DA and α-Syn. However, it is believed that the lysine (Lys) side chain of α-Syn sequence is the initial trigger site for the oligomer formation. Herein, we review different chemical mechanism involved during the interaction of Lys side chain of α-Syn with DA metabolites such as dopamine-o-quinone (DAQ), dopamine-chrome (DAC), dopamine-aldehyde (DOPAL) and neuromelanin. This review also provides the promotive effect of divalent Cu ions on DA metabolites induced α-Syn oligomers and its inhibition effect by antioxidant glutathione (GSH).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2022.105461DOI Listing

Publication Analysis

Top Keywords

α-syn oligomers
16
α-syn
11
parkinson's disease
8
amino acid
8
toxic fibers
8
metabolites induced
8
induced α-syn
8
lys side
8
side chain
8
chain α-syn
8

Similar Publications

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!