Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since the cultivation condition of microbe biomass production (mycelia yield) involves a variety of factors, it's a laborious process to obtain the optimal cultivation condition of Antrodia cinnamomea (A. cinnamomea). This study proposed a hybrid machine learning approach (i.e., ANFIS-NM) to identify the potent factors and optimize the cultivation conditions of A. cinnamomea based on a 32 fractional factorial design with seven factors. The results indicate that the ANFIS-NM approach successfully identified three key factors (i.e., glucose, potato dextrose broth, and agar) and significantly boosted mycelia yield. The interpretability of ANFIS rules made the cultivation conditions visually interpretable. Subsequently, a three-factor five-level central composite design was used to probe the optimal yield. This study demonstrates the proposed hybrid machine learning approach could significantly reduce the time consumption in laboratory cultivation and increase mycelia yield that meets SDGs 7 and 12, hitting a new milestone for biomass production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.128412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!