Carbonized polydopamine layer-protected silicon substrates for light-addressable electrochemical sensing and imaging.

Talanta

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710061, China. Electronic address:

Published: March 2023

The application of silicon (Si) substrate as photoelectrode in light-addressable electrochemistry (LAE) is severely limited due to its ease of surface oxidation. The resulted silicon oxide (SiO) layer is electronically insulating and blocks charge transfer between the electrode and electrolyte. Keeping the Si from being oxidized is a key challenge for its practical use as a semiconductor electrode. In this work, we find that by developing a thin layer of polydopamine film on the surface of Si substrate, followed by carbonization at 550 °C, the natural oxidation of Si substrate can be successfully forestalled. When applied as an electrode, it is further found that the carbonized polydopamine (cPDA) layer can also prevent anodic oxidation of Si. The cPDA layer-modified Si substrate exhibits good photoelectrochemical performance and great stability, with no obvious signal decrease under ambient environment over 32 h. Our work here provides a new modification strategy for anti-oxidation of Si substrate and it is promising in the application of light-addressable electrochemical sensing and imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.124124DOI Listing

Publication Analysis

Top Keywords

carbonized polydopamine
8
light-addressable electrochemical
8
electrochemical sensing
8
sensing imaging
8
substrate
5
polydopamine layer-protected
4
layer-protected silicon
4
silicon substrates
4
substrates light-addressable
4
imaging application
4

Similar Publications

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

December 2024

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.

View Article and Find Full Text PDF

A potential non-precious metal catalyst for oxygen reduction reaction should contain metal-N moieties. However, most of the current strategies to regulate the distances between neighboring metal sites are not pre-designed but depend on the probability by tuning the metal loading or the support. Herein, we report a general method for the synthesis of neighboring metal-N moieties (metal = Fe, Cu, Co, Ni, Zn, and Mn) via an interfacial-fixing strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!