Galanin (GAL) is a 29 amino acid peptide present in the central nervous system (CNS) as well as peripheral tissues in vertebrates. However, the brain distribution pattern of GAL is understudied in reptiles. The aim of this study was to determine the organization of galaninergic neuronal system in the brain of the gecko Hemidactylus frenatus, a tropical and sub-tropical lizard, using rabbit anti-galanin antibody. In the telencephalon, GAL-ir perikarya and fibres were found in the lateral septal nucleus, but only GAL-ir fibres were observed in the striatum, nucleus accumbens, anterior commissure, nucleus centralis amygdalae, dorsal and medial septal nuclei, nucleus of the diagonal band of Broca and in the optic chiasma. In the preoptic region, a cluster of GAL-ir cells and fibres was observed in the periventricular preoptic area and lateral preoptic area. GAL-ir perikarya and fibres were observed in hypothalamic areas such as the supraoptic nucleus, suprachiasmatic nucleus, paraventricular nucleus, periventricular nucleus of the hypothalamus, infundibular recess nucleus and in the median eminence, whereas GAL-ir fibres were present in the pars distalis of the pituitary gland. In the thalamus, GAL-ir fibres were observed in the dorsomedial, dorsolateral, and medial thalamic nuclei. GAL-ir fibres were also detected in mesencephalic areas such as the optic tectum, torus semicircularis, ventral tegmental area and substantia nigra, brain stem as well as the spinal cord. The organization of GAL-ir cells and fibres throughout the gecko brain suggests several neuroendocrine, neuromodulatory and behavioural functions for GAL in lizards. The study provides new insights into the evolutionarily conserved nature of GAL peptide in squamate reptiles and forms a valuable basis for future comparative studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.npep.2022.102310 | DOI Listing |
Neuropeptides
February 2023
Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India. Electronic address:
Galanin (GAL) is a 29 amino acid peptide present in the central nervous system (CNS) as well as peripheral tissues in vertebrates. However, the brain distribution pattern of GAL is understudied in reptiles. The aim of this study was to determine the organization of galaninergic neuronal system in the brain of the gecko Hemidactylus frenatus, a tropical and sub-tropical lizard, using rabbit anti-galanin antibody.
View Article and Find Full Text PDFInt J Mol Sci
October 2018
Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
The aim of the study was to investigate the distribution patterns of cocaine- and amphetamine-regulated transcript- (CART-) and galanin-immunoreactive (GAL-IR) neuronal structures in the human stomach wall, focusing on differences observed in regions directly affected by the cancer process, and those from the surgical margin. Samples from the stomach wall were collected from 10 patients (3 women and 7 men, the mean age 67.0 ± 11.
View Article and Find Full Text PDFNeuropeptides
August 2017
University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Dept. of Anatomy, Paracelsus Medical University, Salzburg, Austria.
Galanin (GAL) is a neuro-regulatory peptide involved in many physiological and pathophysiological processes. While data of GAL origin/distribution in the human eye are rather fragmentary and since recently the presence of GAL-receptors in the normal human eye has been reported, we here systematically search for sources of ocular GAL in the human eye. Human eyes (n=14) were prepared for single- and double-immunohistochemistry of GAL and neurofilaments (NF).
View Article and Find Full Text PDFAnat Histol Embryol
August 2015
Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
This study describes the distribution of galanin (Gal) and galanin receptor 2 (GalR2) in the pre-optic area (POA) of the female guinea pig. Frozen sections were undergone for a routine immunofluorescence labelling. Gal and GalR2 display immunoreactivity in all parts of the pre-optic area.
View Article and Find Full Text PDFJ Chem Neuroanat
November 2014
Department and Clinic of Urology, Faculty of Medical Sciences, Medical University of Warsaw, Warsaw, Poland.
The aim of the present study was to determine the changes in both the distribution pattern and density of nerve fibers containing dopamine β-hydroxylase (DβH), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene related peptide (CGRP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin (SOM), galanin (GAL) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the human polycystic ovaries. In the polycystic ovaries, when compared to the immunoreactions pattern observed in the control gonads, following changes were revealed: (1) an increase in the number of DβH-, VAChT-, VIP- or GAL-immunoreactive (IR) nerve fibers within the stroma as well as in the number of DβH-IR fibers near primordial follicles and medullar veins and venules; (2) a reduction in the number of nerve fibers containing nNOS, CGRP, SOM, PACAP within the stroma and in the numbers of CGRP-IR fibers around arteries; (3) an appearance of SP- and GAL-IR fibers around medullar and cortical arteries, arterioles, veins and venules, with except of GAL-IR fibers supplying medullar veins; and (4) the lack of nNOS-IR nerve fibers near primordial follicles and VIP-IR nerves around medullar arteries and arterioles. In conclusion, our results suggest that the changes in the innervation pattern of the polycystic ovaries in human may play an important role in the pathogenesis and/or course of this disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!