Seven constrained aluminum inden complexes having different substituents and diamine backbones were developed for the ring-opening copolymerization (ROCOP) of epoxides and bulky cyclic anhydrides giving alternating polyesters with ranging from 49 to 226 °C. Among several catalyst/cocatalyst screenings, the aluminum inden complex having a rigid phenylene backbone coupled with 4-dimethylaminopyridine showed the best performance giving linear polyesters. In the case of cyclohexene oxide (CHO) and succinic anhydride (SA), the linear poly(CHO--SA) could be transformed to cyclic polymer when the polymerization was left under prolonged reaction time to induce intramolecular transesterification. The kinetic studies of the ROCOP revealed a zeroth-order dependence on cyclic anhydride and a first-order dependence on epoxide and the catalyst. The catalysts can be extended efficiently to the one-pot CHO/PA/l-lactide terpolymerization giving uncommon tapered copolymers of poly(CHO--PA) and PLA via switchable polymerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c03532 | DOI Listing |
Inorg Chem
December 2022
Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong21210, Thailand.
Seven constrained aluminum inden complexes having different substituents and diamine backbones were developed for the ring-opening copolymerization (ROCOP) of epoxides and bulky cyclic anhydrides giving alternating polyesters with ranging from 49 to 226 °C. Among several catalyst/cocatalyst screenings, the aluminum inden complex having a rigid phenylene backbone coupled with 4-dimethylaminopyridine showed the best performance giving linear polyesters. In the case of cyclohexene oxide (CHO) and succinic anhydride (SA), the linear poly(CHO--SA) could be transformed to cyclic polymer when the polymerization was left under prolonged reaction time to induce intramolecular transesterification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!