A noisy stabilized Kuramoto-Sivashinsky equation is analyzed by stochastic decomposition. For values of the control parameter for which periodic stationary patterns exist, the dynamics can be decomposed into diffusive and transverse parts which act on a stochastic potential. The relative positions of stationary states in the stochastic global potential landscape can be obtained from the topology spanned by the low-lying eigenmodes which interconnect them. Numerical simulations confirm the predicted landscape. The transverse component also predicts a universal class of vortex-like circulations around fixed points. These drive nonlinear drifting and limit cycle motion of the underlying periodic structure in certain regions of parameter space. Our findings might be relevant in studies of other nonlinear systems such as deep learning neural networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894259 | PMC |
http://dx.doi.org/10.1073/pnas.2211359119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!