How to avoid biased predictions is an important and active research question in scene graph generation (SGG). Current state-of-the-art methods employ debiasing techniques such as resampling and causality analysis. However, the role of intrinsic cues in the features causing biased training has remained under-explored. In this paper, for the first time, we make the surprising observation that object identity information, in the form of object label embeddings (e.g. GLOVE), is principally responsible for biased predictions. We empirically observe that, even without any visual features, a number of recent SGG models can produce comparable or even better results solely from object label embeddings. Motivated by this insight, we propose to leverage a conditional variational auto-encoder to decouple the entangled visual features into two meaningful components: the object's intrinsic identity features and the extrinsic, relation-dependent state feature. We further develop two compositional learning strategies on the relation and object levels to mitigate the data scarcity issue of rare relations. On the two benchmark datasets Visual Genome and GQA, we conduct extensive experiments on the three scenarios, i.e., conventional, few-shot and zero-shot SGG. Results consistently demonstrate that our proposed Decomposition and Composition (DeC) method effectively alleviates the biases in the relation prediction. Moreover, DeC is model-free, and it significantly improves the performance of recent SGG models, establishing new state-of-the-art performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2022.3224872 | DOI Listing |
Biomed Phys Eng Express
January 2025
Applied Sciences, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012, INDIA.
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.
View Article and Find Full Text PDFBioDrugs
January 2025
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.
View Article and Find Full Text PDFWorld J Gastrointest Surg
January 2025
Department of Minimally Invasive Digestive Surgery, Antoine-Béclère Hospital, Assistance Publique-Hôpitaux de ParisClamart 92140, Haute-Seine, France.
Anastomotic leakage (AL) is a significant complication following rectal cancer surgery, adversely affecting both quality of life and oncological outcomes. Recent advancements in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for predicting and preventing AL. These technologies can analyze extensive clinical datasets to identify preoperative and perioperative risk factors such as malnutrition, body composition, and radiological features.
View Article and Find Full Text PDFNPJ Comput Mater
January 2025
Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Density-functional theory with extended Hubbard functionals (DFT + + ) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled d and f electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site and inter-site Hubbard parameters.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!