Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl--glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl--glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c16677 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.
In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614 Poznań, Poland.
Biomater Sci
January 2025
Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
Tumor cells can escape from immune killing by binding their programmed death ligand-1 (PD-L1) to the programmed cell death protein 1 (PD-1) of T cells. These immune checkpoint proteins (PD-L1/PD-1) have become very important drug targets, since blocking PD-L1 or PD-1 can recover the killing capability of T cells against tumor cells. Instead of targeting the binding interface between PD-L1 and PD-1, we explored the possibility of regulating the membrane orientation thermodynamics of PD-L1 with ligand-modified ultra-small hydrophobic nanoparticles (NPs) using μs-scale coarse-grained molecular dynamics (MD) simulations in this work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!