Background: The microenvironment of hypoxia is an important factor contributing to the development of glioblastoma (GBM). MicroRNA-588 and its potential target Roundabout-directed receptor 1 (ROBO1) have been reported to promote tumor invasion and proliferation in diseases such as gastric, pancreatic and hepatocellular carcinoma, while their function in GBM and response to hypoxic states remain elusive.
Methods: A microarray was leveraged to identify differentially expressed microRNAs in U251 glioma cells cultured under normoxic and hypoxic conditions. The expression of miR-588 was assessed using quantitative real-time PCR (qRT‒PCR). Gain- and loss-of-function studies were used to evaluate the role of miR-588 under hypoxic and normoxic conditions. Cell invasion, migration, proliferation, and vasculogenic mimicry (VM) formation experiments were performed. The relationship between miR-588 and ROBO1 was confirmed using western blot and luciferase reporter assays. Intracranial xenograft tumor mouse models were used to study the function of miR-588 in vivo.
Results: The expression of miR-588 was significantly upregulated in hypoxic glioma cells relative to normoxic glioma cells. miR-588 inhibited the invasive, migratory and VM-forming abilities of glioma cells in vitro and in vivo. Mechanistically, roundabout guidance receptor 1 (ROBO1) is a direct, functionally relevant target of miR-588 in glioma. ROBO1 knockdown suppressed the expression of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9), thereby inhibiting the invasive, migratory and VM-forming abilities of glioma.
Conclusions: MiR-588 regulated the behaviors of hypoxic glioma cells by targeting ROBO1. miR-588 can be used as a prognostic marker for glioma and has potential implications in glioma gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889532 | PMC |
http://dx.doi.org/10.1007/s11033-022-08063-z | DOI Listing |
Elife
January 2025
Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, United States.
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
Almost all high-grade gliomas, particularly glioblastoma (GBM), are highly migratory and aggressive. Migrasomes are organelles produced by highly migratory cells capable of mediating intercellular communication. Thus, GBM cells may produce migrasomes during migration.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.
Glioblastoma (GBM), the most malignant primary brain tumor in adults, has poor prognosis irrespective of therapeutic advances due to its radio-resistance and infiltrative growth into brain tissue. The present study assessed functions and putative druggability of BRCA1-associated ATM activator 1 (BRAT1) as a crucial factor driving key aspects of GBM, including enhanced DNA damage response and tumor migration. By a stable depletion of BRAT1 in GBM and glioma stem-like (GSC) cell lines, we observed a delay in DNA double-strand break repair and increased sensitivity to radiation treatment, corroborated by in vitro and in vivo studies demonstrating impaired tumor growth and invasion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Glioblastoma (GBM) is highly malignant and grows rapidly, and there is currently a lack of effective treatments. Metabolism provides the basis for the occurrence and development of GBM. Pyruvate dehydrogenase A1 (PDHA1) is a key component in both the tricarboxylic acid cycle and glycolysis, playing an important role in the metabolic processes related to cancer, but its role in GBM remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!