Metamorphic oxygen-evolving molecular Ru and Ir catalysts.

Chem Soc Rev

Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain.

Published: January 2023

AI Article Synopsis

  • Modern clean energy strategies use sunlight and water to generate protons and electrons, mimicking the natural process in Photosystem II.
  • Efficient water oxidation to create molecular oxygen is challenging due to the high energy requirements and complex mechanisms involved, leading to the search for robust catalysts.
  • Ru coordination complexes are prominent water oxidation catalysts (WOCs) that have been studied for their catalytic performance, revealing key factors such as stability and coordination changes that contribute to their effectiveness.

Article Abstract

Today sustainable and clean energy conversion strategies are based on sunlight and the use of water as a source of protons and electrons, in a similar manner as it happens in Photosystem II. To achieve this, the charge separation state induced by light has to be capable of oxidising water by 4 protons and 4 electrons and generating molecular oxygen. This oxidation occurs by the intermediacy of a catalyst capable of finding low-energy pathways proton-coupled electron transfer steps. The high energy involved in the thermodynamics of water oxidation reaction, coupled with its mechanistic complexity, is responsible for the difficulty of discovering efficient and oxidatively robust molecules capable of achieving such a challenging task. A significant number of Ru coordination complexes have been identified as water oxidation catalysts (WOCs) and are among the best understood from a mechanistic perspective. In this review, we describe the catalytic performance of these complexes and focus our attention on the factors that influence their performance during catalysis, especially in cases where a detailed mechanistic investigation has been carried out. The collective information extracted from all the catalysts studied allows one to identify the key features that govern the complex chemistry associated with the catalytic water oxidation reaction. This includes the stability of -O-Ru-O groups, the change in coordination number from CN6 to CN7 at Ru high oxidation states, the ligand flexibility, the capacity to undergo intramolecular proton transfer, the bond strain, the axial ligand substitution, and supramolecular effects. Overall, combining all this information generates a coherent view of this complex chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cs00463aDOI Listing

Publication Analysis

Top Keywords

water oxidation
12
protons electrons
8
oxidation reaction
8
complex chemistry
8
water
5
oxidation
5
metamorphic oxygen-evolving
4
oxygen-evolving molecular
4
molecular catalysts
4
catalysts today
4

Similar Publications

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!