Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Premature birth induces long-term sequelae on the cardiopulmonary system, leading to reduced exercise capacity. However, the mechanisms of this functional impairment during incremental exercise remain unclear. Also, a blunted hypoxic ventilatory response was found in preterm adults, suggesting an increased risk for adverse effects of hypoxia in this population. This study aimed to investigate the oxygen cascade during incremental exercise to exhaustion in both normoxia and hypobaric hypoxia in prematurely born adults with normal lung function and their term born counterparts.
Methods: Noninvasive measures of gas exchange, cardiac hemodynamics, and both muscle and cerebral oxygenation were continuously performed using metabolic cart, transthoracic impedance, and near-infrared spectroscopy, respectively, during an incremental exercise test to exhaustion performed at sea level and after 3 d of high-altitude exposure in healthy preterm ( n = 17; gestational age, 29 ± 1 wk; normal lung function) and term born ( n = 17) adults.
Results: At peak, power output, oxygen uptake, stroke volume indexed for body surface area, and cardiac output were lower in preterm compared with term born in normoxia ( P = 0.042, P = 0.027, P = 0.030, and P = 0.018, respectively) but not in hypoxia, whereas pulmonary ventilation, peripheral oxygen saturation, and muscle and cerebral oxygenation were similar between groups. These later parameters were modified by hypoxia ( P < 0.001). Hypoxia increased muscle oxygen extraction at submaximal and maximal intensity in term born ( P < 0.05) but not in preterm participants. Hypoxia decreased cerebral oxygen saturation in term born but not in preterm adults at rest and during exercise ( P < 0.05). Convective oxygen delivery was decreased by hypoxia in term born ( P < 0.001) but not preterm adults, whereas diffusive oxygen transport decreased similarly in both groups ( P < 0.001 and P < 0.001, respectively).
Conclusions: These results suggest that exercise capacity in preterm is primarily reduced by impaired convective, rather than diffusive, oxygen transport. Moreover, healthy preterm adults may experience blunted hypoxia-induced impairments during maximal exercise compared with their term counterparts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000003077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!