The application scope of metal-organic frameworks (MOFs) can be extended by rationally designing the architecture and components of MOFs, which can be achieved via a metal-containing solid templated strategy. However, this strategy suffers from low efficiency and provides only one specific MOF from one template. Herein, we present a versatile templated strategy in which organic ligands are weaved into hydrogen-bonded organic frameworks (HOFs) for the controllable and scalable synthesis of MOF nanotubes. HOF nanowires assembled from benzene-1,3,5-tricarboxylic acid and melamine via a simple sonochemical approach serve as both the template and precursor to produce MOF nanotubes with varied metal compositions. Hybrid nanotubes containing nanometal crystals and N-doped graphene prepared through a carbonization process show that the optimized NiRuIr alloy@NG nanotube exhibits excellent electrocatalytic HER activity and durability in alkaline media, outperforming most reported catalysts. The strategy proposed here demonstrates a pioneering study of combination of HOF and MOF, which shows great potential in the design of other nanosized MOFs with various architectures and compositions for potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c08245DOI Listing

Publication Analysis

Top Keywords

mof nanotubes
12
synthesis mof
8
hydrogen-bonded organic
8
organic frameworks
8
templated strategy
8
mof
5
general synthesis
4
nanotubes
4
nanotubes hydrogen-bonded
4
frameworks efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!