Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.200931 | DOI Listing |
Commun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFPurinergic Signal
July 2024
Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied.
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA. Electronic address:
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation.
View Article and Find Full Text PDFGlia
October 2024
Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFCytokine IL-1β is an early component of inflammatory cascades, with both priming and activation steps required before IL-1β release. Here, the P2X7 receptor (P2X7R) for ATP was shown to both prime and release IL-1β from retinal microglial cells. Isolated retinal microglial cells increased expression of when stimulated with endogenous receptor agonist extracellular ATP; ATP also rapidly downregulated expression of microglial markers and Changes to all three genes were reduced by specific P2X7R antagonist A839977, implicating the P2X7R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!