Depression is a heterogeneous mental disorder that has been linked to disturbances in the gut microbiome. As an essential part of the gut microbiome, gut virome may play critical roles in disease progression and development. However, the relationship between the effect of gut virome on neurotransmitter metabolism and depression is unknown. We evaluated the alterations of gut virome and neurotransmitters in chronic restraint stress (CRS)-induced mouse model of depression based on viral metagenomics and LC-MS/MS metabolomics analyses. The results reveal that the gut virome profile of CRS group differed significantly from CON group. was the most abundant differential viral family in both groups, followed by , while was only enriched in CRS group of the top 100 differential viruses. The differential viruses that predicted to phage, phage and phage were enriched in CRS group. Furthermore, 12 differential neurotransmitters primarily involved in the tryptophan metabolism pathway were altered in depressive-like mice. Besides, tryptamine and 5-methoxytryptamine hydrochloride were strongly associated with differential viruses belonging to and . Our findings provide new insight into understanding the potential role of the gut virome and metabolites in depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706091 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.1046894 | DOI Listing |
Microbiol Spectr
December 2024
Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, China. Electronic address:
The medicinal beetle Blaps rynchopetera is recognized for its antibacterial, anti-inflammatory, and immune-regulating properties. This study utilized metaviromics technology to systematically characterize the viral community within the gut of B. rynchopetera through high-throughput sequencing of gut contents, with a specific focus on the composition of its bacteriophage community.
View Article and Find Full Text PDFMicrobiome
December 2024
Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Background: Metagenome-assembled viral genomes have significantly advanced the discovery and characterization of the human gut virome. However, we lack a comparative assessment of assembly tools on the efficacy of viral genome identification, particularly across next-generation sequencing (NGS) and third-generation sequencing (TGS) data.
Results: We evaluated the efficiency of NGS, TGS, and hybrid assemblers for viral genome discovery using 95 viral-like particle (VLP)-enriched fecal samples sequenced on both Illumina and PacBio platforms.
Background: Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma.
View Article and Find Full Text PDFGut Microbes
December 2024
USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
Multiple emerging lines of evidence indicate that the microbiome contributes to aging and cognitive health. However, the roles of distinct microbial components, such as viruses (virome) and their interactions with bacteria (bacteriome), as well as their metabolic pathways (metabolome) in relation to aging and cognitive function, remain poorly understood. Here, we present proof-of-concept results from a pilot study using datasets ( = 176) from the Microbiome in Aging Gut and Brain (MiaGB) consortium, demonstrating that the human virome signature significantly differs across the aging continuum (60s vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!