Most pre-clinical studies in cardiac ischemia-reperfusion injury (I/R) are carried out in young or old animals, which does not cater to the adult age in humans who encounter I/R. Not many studies in the literature are available that emphasize the sensitivity of the adult heart to injury from the young heart, where there exist distinct alterations in DNA methylation and mitochondrial function that contribute to injury. In the present study, we utilized young (8 weeks old) and adult (24 weeks old) rat hearts to evaluate distinct DNA methylation alterations that contribute to I/R injury. The cardiac basal physiological activities in young and adult rat hearts were insignificantly changed from normal. But the DNA hypermethylation and expression level of mitochondrial genes were slightly higher in adult rat hearts. The consequential effect of these changes was measured in the I/R heart to understand its response to additional stress. Accordingly, we noted an increase in global DNA hypermethylation levels by 40% and 62% in young and adult I/R hearts, respectively, from their respective control. Subsequently, a decline in mitochondrial genes (ND1, ND4L, ND6, Cyt B, COX1, COX2, and ATP8) that regulate cardiac contractility was observed in adult I/R hearts. These changes, in turn, reduced hemodynamics (Rate pressure product) by 51% and 32% in adult and young I/R hearts, respectively, from their controls. Besides, the I/R-linked infarct size was higher in adult hearts (58%) than in young hearts (37%). Correlation analysis showed a significant negative correlation of global DNA methylation with the MT-ND1 expression (r = -0.7591), MFN2 expression (r = -0.8561) and cardiac RPP (r = -0.8015) in adult I/R hearts. Based on the above observations, we concluded that age promoted DNA methylation and deteriorated cardiac responsive ability to resist I/R injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705337PMC
http://dx.doi.org/10.3389/fgene.2022.995887DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
i/r hearts
16
global dna
12
dna hypermethylation
12
rat hearts
12
adult i/r
12
hearts
10
adult
10
i/r
9
ischemia-reperfusion injury
8

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Epigenetic variation in light of population genetic practice.

Nat Commun

January 2025

Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.

The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!