COVID-19 in Indonesia is considered to be entering the endemic phase, and the population is expected to live side by side with the SARS-CoV 2 viruses and their variants. In this study, procyanidin, oleic acid, methyl linoleic acid, and vitexin, four compounds from binahong leaves-tropical/subtropical plant, were examined for their interactions with the major protease (Mpro) of the SARS-CoV 2 virus. Molecular dynamics simulation shows that procyanidin and vitexin have the best docking scores of -9.132 and -8.433, respectively. Molecular dynamics simulation also shows that procyanidin and vitexin have the best Root Mean Square Displacement (RMSD) and Root Mean Square Fluctuation (RMSF) performance due to dominant hydrogen, hydrophobic, and water bridge interactions. However, further strain energy calculation obtained from ligand torsion analyses, procyanidin and vitexin do not conform as much as quercetin as ligand control even though these two ligands have good performance in terms of interaction with the target protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708379PMC
http://dx.doi.org/10.1155/2022/1178228DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
dynamics simulation
12
procyanidin vitexin
12
simulation procyanidin
8
vitexin best
8
root square
8
simulation ligands
4
ligands binahong
4
binahong main
4
main protease
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!