AI Article Synopsis

  • Coxsackievirus A10 (CV-A10) is a major cause of hand, foot, and mouth disease, and identifying neutralizing epitopes, especially in its VP1 protein, is crucial for developing a vaccine.
  • Bioinformatics and 3D modeling were used to predict and analyze linear epitopes in CV-A10's VP1, leading to the synthesis of epitope peptides for immunization in mice, evaluated by various antibody assays.
  • Of the predicted epitopes, EP4 showed significant neutralization potential and offered 40% protection against CV-A10 in neonatal mice, indicating its promise for future vaccine development.

Article Abstract

Background: Coxsackievirus A10 (CV-A10) is a leading cause of hand, foot, and mouth disease (HFMD). It is necessary to identify neutralizing epitopes to investigate and develop an epitope-based vaccine against CV-A10. The viral protein VP1 is the immunodominant capsid protein and contains the critical neutralizing epitope. However, neutralizing epitopes within VP1 protein of CV-A10 have not been well characterized.

Methods: Bioinformatics techniques were applied to predict linear epitopes on the CV-A10 VP1 protein. The advanced structural features of epitopes were analyzed by three-dimensional (3D) modeling. The anticipated epitope peptides were synthesized and used to immunize mice as antigens. ELISA and micro-neutralization assay were used to determine the specific IgG antibody and neutralizing antibody titers. The protective efficacy of the epitope peptides in vivo was evaluated using a passive immunization/challenge assay.

Results: Three linear epitopes (EP3, EP4, and EP5) were predicted on CV-A10 VP1, all spatially exposed on the capsid surface, and exhibited adequate immunogenicity. However, only EP4, corresponding to residues 162-176 of VP1, demonstrated potent neutralization against CV-A10. To determine the neutralizing capacity of EP4 further, EP4 double-peptide was synthesized and injected into mice. The mean neutralizing antibody titer of the anti-EP4 double-peptide sera was 1:50.79, which provided 40% protection against lethal infection with CV-A10 in neonatal mice. In addition, sequence and advanced structural analysis revealed that EP4 was highly conserved among representative strains of CV-A10 and localized in the EF loop region of VP1, like EV-A71 SP55 or CV-A16 PEP55.

Conclusions: These data demonstrate that EP4 is a specific linear neutralizing epitope on CV-A10 VP1. Its protective efficacy can be enhanced by increasing its copy number, which will be the foundation for developing a CV-A10 epitope-based vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714398PMC
http://dx.doi.org/10.1186/s12985-022-01939-3DOI Listing

Publication Analysis

Top Keywords

vp1 protein
12
cv-a10 vp1
12
cv-a10
10
vp1
8
coxsackievirus a10
8
neutralizing epitopes
8
epitope-based vaccine
8
neutralizing epitope
8
linear epitopes
8
advanced structural
8

Similar Publications

Article Synopsis
  • Human norovirus leads globally in causing stomach infections across all ages.
  • A new detection method using time-resolved fluorescence microsphere immunochromatography was developed, maximizing sensitivity and speed for identifying the VP1 protein of norovirus GII in only 15 minutes.
  • The method displays high accuracy with a 96.60% overall coincidence rate in clinical samples, indicating its potential for quick and effective diagnostics in healthcare settings.
View Article and Find Full Text PDF

Detection of Porcine Norovirus GII.18 Strains in Pigs Using Broadly Reactive RT-qPCR Assay for Genogroup II Noroviruses.

Food Environ Virol

December 2024

Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.

Noroviruses, belonging to the family Caliciviridae, are classified into at least ten genogroups (G) based on their major capsid protein (VP1). The common genogroup to be identified in both humans and pigs is GII, although porcine noroviruses (PoNoVs) belong to genotypes of their own (GII.11, GII.

View Article and Find Full Text PDF

Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.

Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

SRPK1 facilitates IBDV replication by phosphorylating VP1 at S48.

Int J Biol Macromol

December 2024

Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China. Electronic address:

Infectious Bursal Disease Virus (IBDV), a double-stranded RNA virus of the Avibirnavirus genus, causes significant vaccine failures in immunocompromised young poultry. The VP1 protein of IBDV undergoes post-translational modifications that are critical for viral RNA transcription, genome replication, and overall viral proliferation. Phosphorylation enhances the ability of the IBDV polymerase VP1 and facilitates viral replication, while the specific mechanisms underlying VP1 phosphorylation and its role in the IBDV life cycle remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!