Dental caries is the major biofilm-mediated oral disease in the world. The main treatment to restore caries lesions consists of the use of adhesive resin composites due to their good properties. However, the progressive degradation of the adhesive in the medium term makes possible the proliferation of cariogenic bacteria allowing secondary caries to emerge. In this study, a dental adhesive incorporating a drug delivery system based on L-arginine-containing mesoporous silica nanoparticles (MSNs) was used to release this essential amino acid as a source of basicity to neutralize the harmful acidic conditions that mediate the development of dental secondary caries. The in vitro and bacterial culture experiments proved that L-arginine was released in a sustained way from MSNs and diffused out from the dental adhesive, effectively contributing to the reduction of the bacterial strains Streptococcus mutans and Lactobacillus casei. Furthermore, the mechanical and bonding properties of the dental adhesive did not change significantly after the incorporation of L-arginine-containing MSNs. These results are yielding glimmers of promise for the cost-effective prevention of secondary caries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714087PMC
http://dx.doi.org/10.1186/s12951-022-01714-0DOI Listing

Publication Analysis

Top Keywords

dental adhesive
16
secondary caries
12
l-arginine-containing mesoporous
8
mesoporous silica
8
silica nanoparticles
8
cariogenic bacteria
8
dental
6
adhesive
6
caries
5
nanoparticles embedded
4

Similar Publications

Acid resistance and bond strength of calcium-containing adhesive on ename.

Int Dent J

January 2025

Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

Introduction And Aims: Marginal sealing by enamel bonding is important to enhance the durability of the restoration and prevent secondary caries after operative procedure. This study aimed to evaluate the enamel acid resistance and bond strength of an experimental calcium-containing adhesive system.

Methods: All materials were provided by Kuraray Noritake Dental, Inc.

View Article and Find Full Text PDF

Objectives: This study evaluates the effect of different irrigation solutions for postoperative pain in the regenerative endodontic treatments (RET) of necrotic teeth with open apex.

Materials And Methods: This study included necrotic, deeply carious lower molars of 42 patients. Access cavities of the teeth were opened and working lengths were measured at the first visit.

View Article and Find Full Text PDF

Statement Of Problem: The optimal zirconia pretreatment, contingent upon the type of cement used, warrants further research.

Purpose: The purpose of this investigation was to evaluate the influence of various surface pretreatments on the bonding efficacy of cement to zirconia.

Material And Methods: A comprehensive search was conducted across the PubMed, Embase, Scopus, and Web of Science databases for in vitro studies related to bonding with zirconia up to April 2024, supplemented by a manual search.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of a chlorhexidine digluconate solution (CHX) applied as an antiproteolytic agent for controlling erosive tooth wear or as part of the adhesive treatment on long-term bond strength to eroded dentin. Dentin specimens were abraded with a 600-grit silicon carbide (SiC) paper for 1 min (sound dentin - S), subsequently treated with 2% CHX for 1 min (with excess removed, followed by a 6-hour rest), and eroded by exposure to Coca-Cola for 5 min, three times a day, for 5 days (CHX-treated and eroded dentin - CHXE), or only eroded (eroded dentin - E). The specimens were acid-etched (15 s), rinsed (30 s), dried (15 s), and rehydrated with 1.

View Article and Find Full Text PDF

Aim: Calcium silicate-based cements have been widely used in dentistry mainly due to their physicochemical and biological properties. Commercially available materials use radiopacifiers containing metals (bismuth, tantalum, tungsten and/or zirconium). To investigate volumetric changes, in vivo biocompatibility and systemic migration from eight commercially available materials, including powder/liquid and 'ready-to-use' presentations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!