Tailoring a UCST-LCST-pH Multiresponsive Window through a Single Polymer Complex of Chitosan-Hyaluronic Acid.

Biomacromolecules

Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.

Published: December 2022

Multistimuli-responsive polymers are important for controlled release. Owing to the fact that these polymers are derived from vinyl-based monomers, their decoration with other molecules is limited. Polysaccharides, especially chitosan (CS) and hyaluronic acid (HA), are pH-responsive biopolymers, whose chemical structures contain reactive functional groups for feasible chemical modifications to obtain add-on functions. The present work demonstrates the introduction of polymers with upper critical solution temperature (UCST) and lower critical solution temperature (LCST) performances onto CS and HA, respectively. By simply varying the mole ratio between the CS-containing UCST polymer and the HA-containing LCST polymer along with adjusting the pH, a polymer system with a UCST-LCST-pH multiresponsive window can be obtained. This multiresponsive window enables us to control the encapsulation and release with repeatability as evidenced from a model study on lysozyme. The present work, for the first time, shows a simple approach to obtain multiresponsive biodegradable polymers through the formation of a single polymer complex to tailor a specific multiresponsive window.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.2c01226DOI Listing

Publication Analysis

Top Keywords

multiresponsive window
16
ucst-lcst-ph multiresponsive
8
single polymer
8
polymer complex
8
critical solution
8
solution temperature
8
multiresponsive
5
polymer
5
tailoring ucst-lcst-ph
4
window
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!