Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enzymes, as elements with catalytic functions, can be rationally designed and multiple assembled to form a composite catalytic system and achieve cascade catalytic functions. Enzyme cascade catalysis could produce various chemical products with high conversion rate in short time. With the development of DNA nanotechnology, assembling enzymes to different nucleic acid-based scaffolds in different spatial organizations could effectively improve the catalytic efficiency of enzymes. Herein, we review the construction and application of nucleic acid-based scaffold systems from the perspective of template assembly in three dimensions. The challenges and future outlooks in the development of enzyme cascades are also discussed. KEY POINTS: • The principles and construction of various nucleic acid scaffolds are summarized • The application of nucleic acid scaffolds in enzyme cascade catalysis is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-022-12315-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!