The purpose of this study is to improve the efficiency of decontamination using BaSO as a piezocatalyst. Three techniques are employed in this study to enhance the piezocatalytic activity of BaSO. The first method involves coupling BaSO with BaTiO. The acid red 151 and acid blue 113 decontamination rates improved from 56.7% and 60.9% to 61.3% and 64.4%, respectively, as a result of this strategy. Additionally, the composite of BaSO and BaTiO was doped with copper, iron, sulfur, and nitrogen. By doping BaTiO, acid red 151 and acid blue 113 achieved 86.7% and 89.2% efficiency, respectively. Finally, the nanostructures were modified with sucrose. These strategies improved degradation efficiency for acid red 151 and acid blue 113 to 92.9% and 93.3%, respectively. The reusability results showed that the piezo-catalytic activity of the m-S-BaSO-BaTiO catalyst did not show a significant loss after five recycles for the degradation of AB113.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715647PMC
http://dx.doi.org/10.1038/s41598-022-24992-yDOI Listing

Publication Analysis

Top Keywords

acid red
12
red 151
12
151 acid
12
acid blue
12
blue 113
12
piezocatalytic activity
8
activity baso
8
baso batio
8
batio acid
8
acid
6

Similar Publications

In this article, we report on the research on the synthesis of composites based on a porous, highly ordered silica material modified by a metallic nanophase and chitosan biofilm. Due to the ordered pore system of the SBA-15 silica, this material proved to be a good carrier for both the biologically active nanophase (highly dispersed silver nanoparticles, AgNPs) and the adsorption active phase (chitosan). The antimicrobial susceptibility was determined against Gram-positive ATCC 25923, Gram-negative bacterial strains ( ATCC 25922, ATCC 700603, and ATCC 27853), and yeast ATCC 90028.

View Article and Find Full Text PDF

In this study, a sensitive and selective spectrofluorimetric method was developed for the determination of the antidiabetic drug nateglinide based on its reaction with the xanthene dye acid red 87 (AR87). A fluorescence quenching process was observed for the AR87 at 545 nm upon the addition of nateglinide, which was exploited for the quantitative analysis. The reaction mechanism was investigated using quantum mechanical calculations suggesting a transfer between the electron-rich AR87 and the electron-deficient nateglinide.

View Article and Find Full Text PDF

Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.

View Article and Find Full Text PDF

Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca.

View Article and Find Full Text PDF

Objective: To develop and validate a predictive model of 28-day mortality in sepsis based on lactate dehydrogenase-to-albumin ratio (LAR).

Methods: Sepsis patients diagnosed in the department of intensive care medicine of the First Affiliated Hospital of Soochow University from August 1, 2017 to September 1, 2022 were retrospective selected. Clinical data, laboratory indicators, disease severity scores [acute physiology and chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA)] were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!