Marine heatwaves (MHWs)-extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences-have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can-on its own-appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715661PMC
http://dx.doi.org/10.1038/s41467-022-34934-xDOI Listing

Publication Analysis

Top Keywords

marine heatwaves
8
climate change
8
internal variability
8
increase marine
4
changes
4
heatwaves changes
4
changes surface
4
surface ocean
4
ocean temperature
4
variability
4

Similar Publications

In New Zealand, the frequency and intensity of marine heatwaves (MHWs) and blooms of the harmful algal species, Alexandrium pacificum, are increasing in areas where there are natural reefs and commercial farms of the mussel, Perna canaliculus. In this study, we assessed the whole organism, tissue and molecular-level response of juvenile (spat) P. canaliculus exposed to these abiotic and biotic stressors, alone and together.

View Article and Find Full Text PDF

Marine heatwaves are increasingly common due to human-induced climate change. Under prolonged thermal stress on coral reefs, corals can undergo bleaching, leading to mass coral mortality and large-scale changes in benthic community composition. While coral mortality has clear, negative impacts on the body condition and populations of coral-dependent fish species, the mechanisms that drive these changes remain poorly resolved.

View Article and Find Full Text PDF

Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!