Developing dynamic organic ultralong room-temperature phosphorescent (URTP) materials is of practical importance in various applications but remains a challenge due to the difficulty in manipulating aggregate structures. Herein, we report a dish-like molecular architecture via a bottom-up way, featuring guest-responsive dynamic URTP. Through controlling local fragment motions in the molecular architecture, fascinating dynamic URTP performances can be achieved in response to reversible accommodation of various guests, including solvents, alkyl bromides and even carbon dioxide. Large-scale regulations of phosphorescence lifetime (100-fold) and intensity (10-fold) can be realized, presenting a maximum phosphorescence efficiency and lifetime of 78.8% and 483.1 ms, respectively. Moreover, such a dish-like molecular architecture is employed for temperature-dependent multiple information encryption and visual identification of linear alkyl bromides. This work can not only deepen our understanding to construct multifunctional organic aggregates, but also facilitate the design of high-performance dynamic URTP materials and enrich their practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715674 | PMC |
http://dx.doi.org/10.1038/s41467-022-35155-y | DOI Listing |
J Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFSci Rep
January 2025
MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Psychiatry and Yale Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT 06520, USA. Electronic address:
This review explores the genetic basis of Tourette syndrome (TS), a complex neuropsychiatric disorder characterized by motor and vocal tics. Family, twin, and molecular genetic studies provide strong evidence for a genetic component in TS, with heritability estimates ranging from 50% to 80%. The genetic architecture of TS is complex, involving both common variants with small effects and rare variants with larger effects.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:
Increasing plant density is an effective strategy for enhancing crop yield per unit land area. A key architectural trait for crops adapting to high planting density is smaller leaf angle (LA). Previous studies have demonstrated that LG1, a SQUAMOSA BINDING PROTEIN (SBP) transcription factor, plays a critical role in LA establishment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!