Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The vocal membrane, i.e., an extended part of the vocal fold, is observed in a wide range of species including bats and primates. A theoretical study [Mergell, Fitch, and Herzel (1999). J. Acoust. Soc. Am. 105(3), 2020-2028] predicted that the vocal membranes can make the animal vocalizations more efficient by lowering the phonation threshold pressure. To examine this prediction, a synthetic model of the vocal membrane was developed, and its oscillation properties were examined. The experiments revealed that the phonation threshold pressure was lower in the vocal membrane model compared to that in a model with no vocal membrane. Chaotic oscillations were observed as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0015071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!