Amelogenin, the dominant organic component (>90%) in the early stages of amelogenesis, orchestrates the mineralization of apatite crystals into enamel. The self-association properties of amelogenin as a function of pH and protein concentration have been suggested to play a central role in this process; however, the large molecular weight of the self-assembled quaternary structures has largely prevented structural studies of the protein in solution under physiological conditions using conventional approaches. Here, using perdeuterated murine amelogenin (0.25 mM, 5 mg/mL) and TROSY-based NMR experiments to improve spectral resolution, we assigned the H-N spectra of murine amelogenin over a pH range (5.5 to 8.0) where amelogenin is reported to exist as oligomers (pH ≤∼6.8) and nanospheres (pH ≥∼7.2). The disappearance or intensity reduction of amide resonances in the H-N HSQC spectra was interpreted to reflect changes in dynamics (intermediate millisecond-to-microsecond motion) and/or heterogenous interfaces of amide nuclei at protein-protein interfaces. The intermolecular interfaces were concentrated toward the N-terminus of amelogenin (L3-G8, V19-G38, L46-Q49, and Q57-L70) at pH 6.6 (oligomers) and at pH 7.2 (nanospheres) including the entire N-terminus up to Q76 and regions distributed through the central hydrophobic region (Q82-Q101, S125-Q139, and F151-Q154). At all pH levels, the C-terminus appeared disordered, highly mobile, and not involved in self-assembly, suggesting nanosphere structures with solvent-exposed C-termini. These findings present unique, residue-specific insights into the intermolecular protein-protein interfaces driving amelogenin quaternary structure formation and suggest that nanospheres in solution predominantly contain disordered, solvent-exposed C-termini.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286517 | PMC |
http://dx.doi.org/10.1021/acs.biochem.2c00522 | DOI Listing |
Nat Commun
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles.
View Article and Find Full Text PDFStructure
December 2024
Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India. Electronic address:
Ferritins are ubiquitous and play a critical role in iron homeostasis. They are classified into four main subfamilies: classical, bacterial, bacterioferritin, and Dps. These are characterized by subunits with a four-helical bundle domain and interact through three distinct regions-one antiparallel interface (IntA) and two perpendicular interfaces (IntB and IntC), collectively forming a cage-like structure.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.
Angew Chem Int Ed Engl
December 2024
Université de Bordeaux, CBMN UMR5248, IECB, 2, rue Robert Escarpit, 33607, PESSAC, FRANCE.
Peptide stapling has emerged as a versatile approach in drug discovery to reinforce secondary structure elements especially α-helices and improve properties of linear bioactive peptides. Inspired by the prevalence of arginine in protein-protein and protein-DNA interfaces, we investigated guanidinium-stapling as a means to constrain helical peptides. Guanidinium stapling was readily achieved on solid support, utilizing two orthogonally protected lysine or unatural α-amino acid residues with an amino function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!