Cavernous malformations (CMs) are benign vascular malformations that maybe seen anywhere in the central nervous system. They are dynamic lesions, growing or shrinking over time and only rarely remaining stable. Size varies from a few millimeters to a few centimeters. CMs can be sporadic or familial, and while most of them are congenital, de novo and acquired lesions may also be seen. Etiology is still unknown. A genetic molecular mechanism has been proposed since a cerebral cavernous malformation gene loss of function was found in both familial and sporadic lesions. Additionally, recent studies suggest that formation of CMs in humans may be associated with a distinctive bacterial gut composition (microbioma). Imaging is fairly typical but may vary according to age, location, and etiology. Follow-up is not well established because CMs patients have a highly unpredictable clinical course. Angiogenic and inflammatory mechanisms have been implicated in disease activity, as well as lesional hyperpermeability and iron deposition. Imaging and serum biomarkers of these mechanisms are under current investigation. Treatment options, including surgery or radiosurgery, are not well defined and are dependent upon multiple factors, including clinical presentation, lesion location, number of hemorrhagic events, and medical comorbidities. Our purpose is to review the imaging features of CMs based on their size, location, and etiology, as well as their differential diagnosis and best imaging approach. New insights in etiology will be briefly considered. Follow-up strategies, including serum and imaging biomarkers, and treatment options will also be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.13072DOI Listing

Publication Analysis

Top Keywords

cerebral cavernous
8
cavernous malformations
8
location etiology
8
treatment options
8
imaging
6
cms
5
malformations typical
4
typical atypical
4
atypical imaging
4
imaging characteristics
4

Similar Publications

We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

Background: Intracranial arteriovenous malformations (AVMs) are extremely rare in the pediatric population, with an estimated prevalence of 0.014-0.028%.

View Article and Find Full Text PDF

In recent years, an increasing number of reports have described invasive infections caused by bacteria from (SAGs). seems to be more related with pleuropulmonary infections and abscess of the brain and deep soft tissues, and it is more likely to cause suppurative and non-bacteremic infections compared to other members of the same genus. We present two clinical cases of invasive infections in pediatric patients: a liver abscess case and a pansinusitis case associated with bilateral otomastoiditis and parapharyngeal abscess complicated by acute mediastinitis, thrombophlebitis of the cavernous sinus, and thrombosis of the cranial tract of the ipsilateral jugular vein.

View Article and Find Full Text PDF

Traumatic direct type carotid cavernous fistula (CCF) is an acquired arteriovenous shunt between the carotid artery and the cavernous sinus post severe craniofacial trauma or iatrogenic injury. We reported a 46-year-old woman who had developed a traumatic direct type CCF after severe head trauma with a skull base fracture and brain contusion hemorrhage. The clinical manifestations of the patient included pulsatile exophthalmos, proptosis, bruits, chemosis, and a decline in consciousness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!