Spirulina platensis is a type of blue-green algae that contains large amounts of protein with therapeutic effects. The present study was performed to investigate the effects of encapsulated Spirulina protein hydrolysates (SPH) with nanoliposomes (NLPs) in reducing wound healing period. SPH-loaded NLPs showed the size and zeta potential of 158 nm and -48 mV, respectively; as well as a uniform non-aggregated morphology. In-vitro MTT toxicity studies on the Human Foreskin Fibroblast (HFFF-2) cell line exhibited that the hydrolyzed peptides had no toxic effect and increased cell growth. The scratch test confirmed the MTT results. For in-vivo study, 162 mice were divided into nine groups, including the mice groups treated with blank gel, blank NLPs, and those treated with 2.5, 5, and 10 % SPH and SPH-loaded NLPs. The histopathological assessment was done to investigate rate of fibroblast proliferation and epithelialization. Immunofluorescence staining for bFGF, CD31, COL1A was conducted. The results showed that the mice group treated with SPH-NLPs showed higher wound contraction, epithelization, fibroblast proliferation, and higher expressions for bFGF, CD31, COL1A compared with blanks and other groups. In conclusion, the derived and encapsulated peptides showed significant effects in accelerating wound healing via angiogenesis and collagen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.122457 | DOI Listing |
Sci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFNat Commun
December 2024
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department of Biomedical Engineering, TOBB Economy and Technology University, Ankara, Türkiye.
Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200 g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!