Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Minerals in rice leaves is a crucial indicator of plant health, and their concentrations can be used to guide plant management. It is important to predict mineral content in contaminated rice rapidly. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to quantify minerals (Ca, Cu, Fe, K, Mg, Mn, and Na) in rice leaves under chromium (Cr) stress. Two feature extraction methods, including principal component analysis (PCA) and extreme gradient boosting (XGBoost), were compared to identify important variables that related to mineral concentrations. Results showed that partial least square regression (PLSR) achieved good performance in Ca, Fe Mg, K, Mn, and Na, with correlation coefficient of 0.9782, 0.8712, 0.8933, 0.9206, 0.9856, and 0.9865, root mean square error of 219.25, 14.78, 1192.47, 385.12, 9.56, and 124.32 mg/kg, respectively. In addition, the correlation between different spectral lines were further analyzed. Cr exhibited a positive correlation with Ca, Mg, and Na, and a negative correlation with Mn, Cu, and K. The proposed method provides a high-accuracy and fast approach for minerals prediction in rice leaves under Cr stress, which is important for environmental protection and food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160545 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!