A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast detection of minerals in rice leaves under chromium stress based on laser-induced breakdown spectroscopy. | LitMetric

Fast detection of minerals in rice leaves under chromium stress based on laser-induced breakdown spectroscopy.

Sci Total Environ

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: February 2023

Minerals in rice leaves is a crucial indicator of plant health, and their concentrations can be used to guide plant management. It is important to predict mineral content in contaminated rice rapidly. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to quantify minerals (Ca, Cu, Fe, K, Mg, Mn, and Na) in rice leaves under chromium (Cr) stress. Two feature extraction methods, including principal component analysis (PCA) and extreme gradient boosting (XGBoost), were compared to identify important variables that related to mineral concentrations. Results showed that partial least square regression (PLSR) achieved good performance in Ca, Fe Mg, K, Mn, and Na, with correlation coefficient of 0.9782, 0.8712, 0.8933, 0.9206, 0.9856, and 0.9865, root mean square error of 219.25, 14.78, 1192.47, 385.12, 9.56, and 124.32 mg/kg, respectively. In addition, the correlation between different spectral lines were further analyzed. Cr exhibited a positive correlation with Ca, Mg, and Na, and a negative correlation with Mn, Cu, and K. The proposed method provides a high-accuracy and fast approach for minerals prediction in rice leaves under Cr stress, which is important for environmental protection and food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160545DOI Listing

Publication Analysis

Top Keywords

rice leaves
16
minerals rice
12
leaves chromium
8
chromium stress
8
laser-induced breakdown
8
breakdown spectroscopy
8
rice
5
fast detection
4
minerals
4
detection minerals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!