Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2022.115356DOI Listing

Publication Analysis

Top Keywords

potential pharmacological
8
neonatal hypoxic-ischemic
8
hypoxic-ischemic encephalopathy
8
bbb
5
pharmacological target
4
target tight
4
tight junctions
4
junctions improve
4
improve bbb
4
permeability
4

Similar Publications

Use of psychedelic treatments in psychiatric clinical practice: an EPA policy paper.

Eur Psychiatry

January 2025

Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.

Background: Recent years show an exponential increased interest ("renaissance") in the use of psychedelics for the treatment of mental disorders and broader. Some of these treatments, such as psilocybin for depression, are in the process of formal regulation by regulatory bodies in the US (FDA) and Europe (EMA), and as such on the brink of real-world implementation. In the slipstream of these developments increasing commercial initiatives are taking shape.

View Article and Find Full Text PDF

Enhancing Medical Student Engagement Through Cinematic Clinical Narratives: Multimodal Generative AI-Based Mixed Methods Study.

JMIR Med Educ

January 2025

Department of Medical Education, University of Idaho, 875 Perimeter Drive MS 4061, WWAMI Medical Education, Moscow, ID, 83844-9803, United States, 1 5092090908.

Background: Medical students often struggle to engage with and retain complex pharmacology topics during their preclinical education. Traditional teaching methods can lead to passive learning and poor long-term retention of critical concepts.

Objective: This study aims to enhance the teaching of clinical pharmacology in medical school by using a multimodal generative artificial intelligence (genAI) approach to create compelling, cinematic clinical narratives (CCNs).

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

Introduction: Hypertension is the leading preventable cause of cardiovascular morbidity and mortality globally, with a disproportionate impact on low-income and middle-income countries like Sri Lanka. Effective blood pressure (BP) control improves outcomes in patients with hypertension. This study aimed to assess the prevalence of uncontrolled hypertension, and its correlates among Sri Lankan patients with hypertension in clinic settings.

View Article and Find Full Text PDF

NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage.

Mol Med Rep

March 2025

State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.

Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!