Design, synthesis, and metabolite identification of Tamoxifen esterase-activatable prodrugs.

Bioorg Chem

Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt. Electronic address:

Published: February 2023

Tamoxifen (TAM) is used in treatment of hormonal dependent breast cancer, both in premenopausal and postmenopausal women. TAM is intrinsically metabolized by CYP450 enzymes to more active metabolites. Recent reports identified CYP2D6, an enzyme involved in the conversion of TAM to the more potent 4-OH-TAM, is encoded by theCYP2D6gene, which is highly polymorphic. Women with inactive alleles are poor metabolizers; in many cases they suffer acquired TAM resistance. Herein we report synthesis and biological evaluation of novel TAM analogues. The novel analogues are designed to elude CYP2D6 metabolism. Hydrolysis of the carbamate moiety on ring C is mediated via carboxylesterases. Compound 3d [E/Z Benzyl-carbamic acid4-{2-benzyl-1-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-but-1-enyl}-phenyl ester] showed GI = 0.09 µM on MCF-7 and GI = 1.84 µM on MDA-MB231 cell lines. To further validate our hypothesis, metabolites of selected novel analogues were determined in vitro under different incubation conditions. The hydroxylated analogues were obtained under non CYP2D6 dependent conditions. Compound 8d, a benzyl carbamate derivative, was the least-stable analog and showed the highest rate of metabolism among all tested analogues. Our in silico model showed the novel flexible analogues can still adopt an antiestrogenic binding profile occupying the same pocket as 4-OH-TAM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2022.106303DOI Listing

Publication Analysis

Top Keywords

novel analogues
8
analogues
6
tam
5
design synthesis
4
synthesis metabolite
4
metabolite identification
4
identification tamoxifen
4
tamoxifen esterase-activatable
4
esterase-activatable prodrugs
4
prodrugs tamoxifen
4

Similar Publications

Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.

View Article and Find Full Text PDF

The convergent total synthesis of ixabepilone and its analogues in a 13-step longest linear sequence is reported. The crucial chiral centers at challenging C3-O, C8-C and C15-N positions on the scaffold of the ixabepilone were installed via highly efficient asymmetric hydrogenations (up to 95% yield and up to 99% e.e.

View Article and Find Full Text PDF

Three-dimensional digital model of the facial nerve assisted in the excision of benign parotid tumors based on 3D-DESS-WE-MRI.

Sci Rep

December 2024

Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, #7 Wei Wu Road, Zhengzhou, 450003, Henan, China.

This study proposes a novel surgical technique for the excision of benign parotid tumors, utilizing a extracapsular dissection guided by a three dimensional digital model of the facial nerve(3DFN-ECD) and compares its clinical efficacy with the extracapsular dissection (ECD) method. This prospective study included 68 patients with benign parotid tumors. The control group (40 patients) received the ECD treatment, while the experimental group (28 patients), underwent the 3DFN-ECD approach proposed in this study.

View Article and Find Full Text PDF

Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!