Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (K) are 10-10 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of β-sheet is accompanied by the decrease of α-helix and β-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.122128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!