A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioavailability of dissolved organic matter varies with anthropogenic landcover in the Upper Mississippi River Basin. | LitMetric

Anthropogenic conversion of forests and wetlands to agricultural and urban landcovers impacts dissolved organic matter (DOM) within streams draining these catchments. Research on how landcover conversion impacts DOM molecular level composition and bioavailability, however, is lacking. In the Upper Mississippi River Basin (UMRB), water from low-order streams and rivers draining one of three dominant landcovers (forest, agriculture, urban) was incubated for 28 days to determine bioavailable DOC (BDOC) concentrations and changes in DOM composition. The BDOC concentration averaged 0.49 ± 0.30 mg L across all samples and was significantly higher in streams draining urban catchments (0.72 ± 0.34 mg L) compared to streams draining agricultural (0.28 ± 0.15 mg L) and forested (0.47 ± 0.17 mg L) catchments. Percent BDOC was significantly greater in urban (10% ± 4.4%) streams compared to forested streams (5.6% ± 3.2%), corresponding with greater relative abundances of aliphatic and N-containing aliphatic compounds in urban streams. Aliphatic compound relative abundance decreased across all landcovers during the bioincubation (average -4.1% ± 10%), whereas polyphenolics and condensed aromatics increased in relative abundance across all landcovers (average of +1.4% ± 5.9% and +1.8% ± 10%, respectively). Overall, the conversion of forested to urban landcover had a larger impact on stream DOM bioavailability in the UMRB compared to conversion to agricultural landcover. Future research examining the impacts of anthropogenic landcover conversion on stream DOM composition and bioavailability needs to be expanded to a range of spatial scales and to different ecotones, especially with continued landcover alterations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119357DOI Listing

Publication Analysis

Top Keywords

streams draining
12
dissolved organic
8
organic matter
8
anthropogenic landcover
8
upper mississippi
8
mississippi river
8
river basin
8
landcover conversion
8
composition bioavailability
8
dom composition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!