AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is a severe type of liver cancer, but the cellular processes behind its progression are not fully understood, particularly regarding the SOCS2 protein's role.
  • In experiments with mice, researchers found that those lacking SOCS2 had more severe liver tumors, increased inflammation, and higher levels of certain proteins linked to cancer growth, suggesting SOCS2 has a protective function.
  • Additionally, lower levels of SOCS2 were observed in HCC patients compared to healthy livers, indicating it could be a potential biomarker and target for HCC treatment.

Article Abstract

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, but the precise intracellular mechanisms underlying the progression of this inflammation associated cancer are not well established. SOCS2 protein plays an important role in the carcinogenesis of different tumors by regulating cytokine signalling through the JAK/STAT axis. However, its role in HCC is unclear. Here, we investigate the role of SOCS2 in HCC progression and its potential as HCC biomarker. The effects of SOCS2 in HCC progression were evaluated in an experimental model of diethylnitrosamine (DEN)-induced HCC in C57BL/6 and SOCS2 deficient mice, in cultured hepatic cells, and in liver samples from HCC patients. Mice lacking SOCS2 showed higher liver tumor burden with increased malignancy grade, inflammation, fibrosis, and proliferation than their controls. Protein and gene expression analysis reported higher pSTAT5 and pSTAT3 activation, upregulation of different proteins involved in survival and proliferation, and increased levels of proinflammatory and pro-tumoral mediators in the absence of SOCS2. Clinically relevant, downregulated expression of SOCS2 was found in neoplasia from HCC patients compared to healthy liver tissue, correlating with the malignancy grade. In summary, our data show that lack of SOCS2 increases susceptibility to chemical-induced HCC and suggest the tumor suppressor role of this protein by regulating the oncogenic and inflammatory responses mediated by STAT5 and STAT3 in the liver. Hence, SOCS2 emerges as an attractive target molecule and potential biomarker to deepen in the study of HCC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.114060DOI Listing

Publication Analysis

Top Keywords

socs2
10
hcc
10
hepatocellular carcinoma
8
socs2 hcc
8
hcc progression
8
hcc patients
8
malignancy grade
8
liver
5
socs2 protects
4
protects chemical-induced
4

Similar Publications

Chronic Chagas cardiomyopathy is associated with an unbalanced immune response and impaired heart function, and available drugs do not prevent its development. Zileuton (Zi), a 5-lypoxigenase inhibitor, affects inflammatory/pro-resolution mediators. Herein, Zi treatment in the early phase of infection reduced parasitemia associated mainly with the direct effect of Zi on the parasite, and the enzyme epoxide hydrolase was the potential molecular target behind the trypanocidal effect.

View Article and Find Full Text PDF

Background: Polymorphonuclear neutrophils (PMN) activation by monosodium urate crystals (MSU) is crucial to acute gouty arthritis and subsequent spontaneous remission within 7-10 days. Activated PMNs release neutrophil extracellular traps (NETs) that entrap MSU crystals, forming NET-MSU aggregates. Whether NET-MSU aggregates contribute to the resolution of acute inflammation remains to be elucidated.

View Article and Find Full Text PDF

Genome-Wide Selection Signals Reveal Candidate Genes Associated with Plateau Adaptation in Tibetan Sheep.

Animals (Basel)

November 2024

Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Article Synopsis
  • Tibetan sheep have specific adaptations that help them survive in the harsh conditions of the Qinghai-Tibet Plateau, but the underlying genetic mechanisms for these adaptations are not well understood.
  • The study involved analyzing whole-genome resequencing data from Tibetan sheep at different altitudes, leading to the identification of a significant number of candidate genes related to high-altitude adaptation.
  • Key genes were found to be associated with several important signaling pathways, offering insights into their roles in helping Tibetan sheep manage low oxygen levels at high altitudes.
View Article and Find Full Text PDF

Cancer Cell-Derived Exosomal miR-500a-3p Modulates Hepatic Stellate Cell Activation and the Immunosuppressive Microenvironment.

Adv Sci (Weinh)

November 2024

Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.

Article Synopsis
  • - The study investigates the role of miR-500a-3p in hepatocellular carcinoma (HCC), emphasizing its connection to liver fibrosis and cirrhosis, and how these factors influence tumor progression.
  • - Researchers analyzed clinical data and conducted experiments showing that miR-500a-3p levels are elevated in HCC and cirrhosis tissues, correlating with worse survival rates due to its effect on immune response and HCC-related cell behavior.
  • - The mechanism of action involves miR-500a-3p being delivered via exosomes, affecting the JAK3/STAT5 pathway through SOCS2, which ultimately enhances HCC growth and invasiveness.
View Article and Find Full Text PDF

Background: Globally, liver cancer as one of the most frequent fatal malignancies, hits hard and fast. And the lack of effective treatments for liver hepatocellular carcinoma (LIHC), activates the researchers to promote promising precision medicine. Interestingly, emerging evidence proves that cellular senescence is involved in the progression of cancers and is recognized for its hallmark-promoting capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!