Objectives: To investigate the compositional and functional characteristics of the gut microbiota in primary Sjögren's syndrome (pSS) and compare them with those in systemic lupus erythematosus (SLE).
Methods: Stool samples from 78 treatment naïve pSS patients and 78 matched healthy controls were detected by shotgun metagenomic sequencing and compared with those from 49 treatment naïve SLE patients. The virulence loads and mimotopes of the gut microbiota were also assessed by sequence alignment.
Results: The gut microbiota of treatment naïve pSS patients had lower richness and evenness and showed a different community distribution than that of healthy controls. The microbial species enriched in the pSS-associated gut microbiota included Lactobacillus salivarius, Bacteroides fragilis, Ruminococcus gnavus, Clostridium bartlettii, Clostridium bolteae, Veillonella parvula, and Streptococcus parasanguinis. Lactobacillus salivarius was the most discriminating species in the pSS patients, especially in those with interstitial lung disease (ILD). Among the differentiating microbial pathways, the superpathway of l-phenylalanine biosynthesis was also further enriched in pSS complicated with ILD. There were more virulence genes carried by the gut microbiota in pSS patients, most of which encoded peritrichous flagella, fimbriae, or curli fimbriae, three types of bacterial surface organelles involved in bacterial colonization and invasion. Five microbial peptides with the potential to mimic pSS-related autoepitopes were also enriched in the pSS gut. SLE and pSS shared significant gut microbial traits, including the community distribution, altered microbial taxonomy and pathways, and enriched virulence genes. However, Ruminococcus torques was depleted in pSS patients but enriched in SLE patients compared to that in healthy controls.
Conclusions: The gut microbiota in treatment naïve pSS patients was disturbed and shared significant similarity with that in SLE patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaut.2022.102958 | DOI Listing |
Microbiome
January 2025
Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.
View Article and Find Full Text PDFVirol J
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.
View Article and Find Full Text PDFNutr J
January 2025
Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, 29 Bulan Road, Shenzhen, Guangdong, 518000, China.
Background: Previous studies found that it is promising to achieve the protective effects of dietary patterns on cardiovascular health through the modulation of gut microbiota. However, conflicting findings have been reported on how dietary patterns impact gut microbiota in individuals either established or at risk of cardiovascular disease (CVD). Our systematic review aimed to explore the effect of dietary patterns on gut microbiota composition and on risk factors for CVD in these populations.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!