Various metabolic diseases are associated with the accumulation of specific amino acids due to abnormal metabolic pathways, and thus can be diagnosed by measuring the level of amino acids in body fluids. However, present methods for amino acid analysis are not readily accessible because they require a complex experimental setup, expensive equipment, and a long processing time. Here, we present a dual sensing microfluidic device that enables fast, portable, and quantitative analysis of target amino acids, harnessing the biological mechanism of protein synthesis. In this device, the working principle of a finger-actuated pumping unit is applied, and the microchannels are designed to perform cell-free synthesis of a reporter protein in response to the target amino acids in the assay samples. Multiple steps required for the translational assay are controlled by the simple operation of two pushbuttons on the device. It is demonstrated that the developed microfluidic device provides precise quantification of two amino acids (methionine and phenylalanine) within 30 min at room temperature. We expect that the application of the presented device can be readily extended to the point-of-care testing of other metabolic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114936 | DOI Listing |
Front Microbiol
December 2024
Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China.
Introduction: Crop rotation of tobacco with other crops could effectively break the negative impact of continuous tobacco cropping, but the mechanisms of intercropping system effects on tobacco, especially on the rhizosphere, are not clear.
Methods: In this study, we investigated the impact of intercropping system on the diversity and function of tobacco metabolites and microorganisms through metabolomic and metagenomic analyses of the tobacco rhizosphere microenvironment intercropped with maize and soybean.
Results: The results showed that the contents of huperzine b, chlorobenzene, and P-chlorophenylalanine in tobacco rhizosphere soils differed significantly among soybean-tobacco and maize-tobacco intercropping system.
The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.
View Article and Find Full Text PDFUnlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).
View Article and Find Full Text PDFCystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!