Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotic contaminants can migrate over long distances in the water, thus possibly causing severe detriment to the environment and even potential harm to human health. Heterogeneous activation of peroxymonosulfate (PMS) assisted by visible light is an emerging and promising technology for the purification of such wastewater. This study designed an ultra-efficient and stable PMS activator (FeCN) to restore the typical antibiotic-polluted water under harsh conditions. About 90.94% of sulfamethoxazole (SMX) was degraded in 35 min in the constructed FeCN+PMS/vis system, and the reaction rate constant was nearly 50-fold higher than direct photocatalysis. Electron spin resonance, quenching experiments, LC/MS technique, eco-toxicity assessment, and density functional theory validated that the SMX removal was dominated by the attack of h, O and O on the active atoms of SMX molecules with high Fukui index, presenting as a simultaneous degradation and detoxification process. Such a visible-light-assisted PMS activation system also had good resistance to the environmental water bodies and a broad spectrum in the degradation of various pollutants. In particular, Cl (50 mM) could significantly accelerate the removal of SMX with a 32.6-fold increase in catalytic activity, and the mineralization efficiency could reach 56.6% under identical conditions. Moreover, this Cl containing system excluded the degradation products of disinfection by-products, and such a system was also versatile for different contaminants. This work demonstrates the feasibility of the FeCN+PMS/vis system for the remediation of antibiotic-contaminated wastewater in the presence and absence of Cl, and also highlights their great potential in WWTPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!