Objectives: The main function of myenteric neurons is the control of gut motility. As we recently showed that nitroxyl (HNO) induces intestinal smooth muscle relaxation, it was of interest to evaluate the effects of this signalling molecule on myenteric neurons in order to distinguish its properties in regard to myocytes.
Methods: Myenteric neurons isolated from the ileum of 4-10 days old rats were used. HNO-induced changes in intracellular concentration of Ca or membrane potential and ion currents were measured using the Ca-sensitive fluorescent dye fura-2 AM or by electrophysiological whole-cell recordings, respectively. Changes in intracellular thiol groups pool were evaluated using thiol tracker violet. Angeli's salt was used as HNO donor.
Results: The HNO donor Angeli's salt induced a significant increase in the cytosolic Ca concentration at the concentration 50 µM and a membrane hyperpolarization from a resting membrane potential of -56.1 ± 8.0 mV to -63.1 ± 8.7 mV (n=7). Although potassium channels primarily drive membrane potential changes in these cells, outwardly rectifying potassium currents were not significantly affected by 50 µM Angeli's salt. Fast inward sodium currents were slightly but not significantly reduced by HNO. In more sensitive cells, HNO tended to reduce the pool of thiol groups.
Conclusions: As in the case of smooth muscle cells, HNO causes hyperpolarization of myenteric neurons, an effect also associated with an increase in intracellular Ca concentration. Pathways other than activation of potassium currents appear to drive the hyperpolarization evoked by HNO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jbcpp-2022-0233 | DOI Listing |
Cell Mol Gastroenterol Hepatol
January 2025
Dept of Physiology & Cell Biology, University of Nevada Reno School of Medicine, Reno, NV. Electronic address:
Background And Aims: Gastrointestinal motility persists when peripheral cholinergic signaling is blocked genetically or pharmacologically, and a recent study suggests nitric oxide drives propagating neurogenic contractions.
Methods: To determine the neuronal substrates that underlie these contractions, we measured contractile-associated movements together with calcium responses of cholinergic or nitrergic myenteric neurons in un-paralyzed ex vivo preparations of whole mouse colon. We chose to look at these two subpopulations because they encompass nearly all myenteric neurons.
Sci Transl Med
January 2025
Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.
View Article and Find Full Text PDFGastro Hep Adv
August 2024
Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.
View Article and Find Full Text PDFJ Vet Res
December 2024
Institute of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland.
Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!