Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A monosubstituted 1,3-diene derivative attached to a polymer is demonstrated to act as a macrochain transfer agent in catalytic ring-opening metathesis polymerization. PEG- and PLA-based macrochain transfer agents were synthesized in a few steps and were characterized using NMR spectroscopy, size exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-ToF) mass spectrometry. Poly(l-lactide) based diblock copolymer, poly(ethylene glycol)-based diblock, and triblock (ABA type) copolymers of varied chain lengths were prepared catalytically in a one-pot approach via metathesis polymerization. Block copolymers were characterized by SEC and showed monomodal molecular weight distributions. Moreover, DOSY NMR spectroscopy further proved the block microstructures of the synthesized polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.2c00684 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!