A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transmembrane Aggregation of Aβ10-40 Peptides in an Anionic Lipid Bilayer. | LitMetric

Transmembrane Aggregation of Aβ10-40 Peptides in an Anionic Lipid Bilayer.

J Chem Inf Model

School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States.

Published: December 2022

Using the all-atom model and 10 μs serial replica-exchange molecular dynamics (SREMD), we investigated the binding of Alzheimer's Aβ10-40 peptides to the anionic dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) lipid bilayer. Our objective was to probe transmembrane Aβ10-40 aggregation and to test the utility of SREMD. Our results are threefold. First, upon binding, Aβ10-40 adopts a helical structure in the C-terminus and deeply inserts into the bilayer. Binding is primarily controlled by electrostatic interactions of the peptides with water, ions, and lipids, particularly, anionic DMPG. Second, Aβ-bilayer interactions reorganize lipids in the proximity of the bound peptides, causing an influx of DMPG lipids into the Aβ binding footprint. Third and most important, computed free energy landscapes reveal that Aβ10-40 peptides partition into monomeric and dimeric species. The dimers result from transmembrane aggregation of the peptides and induce a striking lipid density void throughout both leaflets in the bilayer. There are multiple factors stabilizing transmembrane dimers, including van der Waals and steric interactions, electrostatic interactions, and hydrogen bonding, hydration, and entropic gains originating from dimer conformations and lipid disorder. We argue that helix dipole-dipole interactions underestimated in the all-atom force field must be a contributing factor to stabilizing antiparallel transmembrane dimers. We propose that transmembrane aggregates serve as mechanistic links between the populations of extra- and intracellular Aβ peptides. From the computational perspective, SREMD is found to be a viable alternative to traditional replica-exchange simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c01192DOI Listing

Publication Analysis

Top Keywords

aβ10-40 peptides
12
transmembrane aggregation
8
peptides anionic
8
lipid bilayer
8
electrostatic interactions
8
transmembrane dimers
8
peptides
7
transmembrane
6
aβ10-40
5
interactions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!