In karst regions, the majority of studies have focused on ecosystem carbon sequestration in the same lithology, but no studies in different lithologies. In this study, actual measurements were used to reveal carbon sequestration characteristics of two plantation forest ecosystems (Bodinieri cinnamon and Cupressus funebris) with different lithologies of karst. The results showed that the tree layer showed the highest vegetation biomass, carbon content, carbon density, and ratio of aboveground biomass to belowground biomass. The carbon density of B. cinnamon plantation and C. funebris plantation was high in dolomite and in limestone respectively. The soil quality and carbon density of bare ground and plantation varied across different lithologies. The carbon density of various ecosystem components was in the order of vegetation>soil>litterfall. The carbon density and net carbon density of plantation varied across different lithologies. In B. cinnamon plantation, the carbon sequestration rate of vegetation and ecosystem was high in dolomite, moderate in limestone, and low in dolomitic sandstone. In Cupressus funebris plantation, the carbon sequestration rate was in the order of limestone>dolomite>dolomitic sandstone. These findings revealed that lithology is an important factor affecting ecosystem carbon pools, and plantation ecosystems have low biomass and low carbon density in karst areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714837PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276537PLOS

Publication Analysis

Top Keywords

carbon density
28
carbon sequestration
20
carbon
14
plantation
9
sequestration characteristics
8
characteristics plantation
8
plantation forest
8
forest ecosystems
8
lithologies karst
8
ecosystem carbon
8

Similar Publications

Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.

View Article and Find Full Text PDF

Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Revealing the catalytic oxidation mechanism of CO on α-FeO surfaces: an thermodynamic study.

Phys Chem Chem Phys

January 2025

Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.

Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!